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Abstract— This paper presents an unsupervised segmentation
method using hybridized Self-Organizing Maps (SOMs) and
Fuzzy Adaptive Resonance Theory (ART) based only on the
brightness distribution and characteristics of head MR images.
We specifically examine the features of mapping while main-
taining topological relations of weights with SOMs and while
integrating a suitable number of categories with Fuzzy ART.
Our method can extract intracranial regions using Level Set
Methods (LSMs) of deformable models from head MR images.
For the extracted intracranial regions, our method segments
brain tissues with high granularity using SOMs. Subsequently,
these regions are integrated with Fuzzy ART while maintaining
relations of anatomical structures of brain tissues and the order
of brightness on T2-weighted images. We applied our method
to head MR images that are used at clinical sites. We obtained
effective and objective segmentation results according to the
anatomical structural information of the brain for supporting
diagnosis of brain atrophy. Moreover, we applied our method
to a head MR image database including data of 30 men
and women in their 30s–70s. Results revealed a significant
correlation between aging and expanding of cerebrospinal fluid
(CSF).

I. I NTRODUCTION

High-resolution medical images have been used at clinical
sites with great recent progress in their respective modalities.
These medical images are used now not only for diagnosis,
but also for data sharing via electronic medical records and
dialogues for informed consent. Confronted with the need for
integrating these systems, it is desired from the viewpoint of
improved diagnostic accuracy and reduction of the load to
create an object according to the target tissue rather than
direct use of images. Therefore, a method to segment brain
tissues for diagnosis using head MR images for objective
diagnosis is necessary. Moreover, the method should not be
influenced by the operator’s subjective assessment. However,
segmentation of brain tissues is regarded adversely because
boundaries of brain tissues are obscure. Brain tissues are
classifiable into grey matter (GM) comprising neurons, and
white matter (WM) comprising axons. Brain atrophy is
caused by decreasing GM, which is not always accompanied
by decreased WM. Moreover, cerebrospinal fluid (CSF),
which flows to the region of brain atrophy, expands according
to the progress of brain atrophy. For diagnosis of the brain
atrophy, diagnosticians concentrate their attention on CSF,
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which is easily observed visually. Although various methods
have been proposed for segmentation of head MR images,
they diagnose brain atrophy empirically and subjectively
based on the appearance of original images. For that reason,
objective segmentation methods are necessary for supporting
and reducing the load of diagnosis.

Various methods have been proposed for segmentation of
head MR images [1]–[6]. These methods are classifiable into
two approaches: those which require representative points
selected by an operator and those which do not. The approach
must specify representative points for each tissue to be
segmented. Segmentation results depend strongly on the
subjective judgments of an operator, although the accuracy
is superior. Moreover, these methods require representative
points for segmentation of head MR images. These require-
ments heavily burden the operator. Especially, generalization
ability is lowered and the network responds only for training
data for neural network based methods if the number of
representative points set by the operator is smaller. On the
other hand, segmentation without the necessity of specifica-
tion of representative points is attracting attention from many
investigators. Madokoro et al. proposed an unsupervised
segmentation method used in self-mapping characteristics
of one-dimensional Self-Organizing Maps (SOMs) based
only on the brightness distribution and characteristics [7].
In their method, the mapping (Kohonen) layer of SOMs
is set to five units. The correspondence relation between
brain tissues and segmentation results differs among MR
images. At clinical sites, T2-weighted images are used most
frequently. Edema and tumors are shown with high brightness
in T2-weighted images. However, we cannot divide GM and
WM because the T2-weighted images have only a slight
difference in their brightness. Therefore, when the mapping
layer of SOMs is greater than six units, their method requires
an assignment tissue while confirming the correspondence
relation with tissues by an operator. Brightness distribution
of MR images varies among individuals. It is important to
use the unsupervised segmentation framework of brain tissue
without influence by the operator’s subjective interference.

This paper presents an unsupervised segmentation method
of brain tissues on head MR images to quantify the degree
of the brain atrophy with a view to reducing the load on the
diagnostician. We use axial head MR images, for which it is
easy to confirm a frontal lobe with notable brain atrophy. The
modality that is used in the evaluation of the brain atrophy
is T2, especially in brain dock examinations at clinical
sites. Moreover, the T2-weighted images readily portray CSF,
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Fig. 1. Network architecture and the entire procedure used for our method.

which is depicted with higher brightness than other modality
images. On the histogram of T2-weighted images, GM and
WM are located respectively in the high and low brightness
range.

We use SOMs for classification of categories that are
mapped brightness characteristics of brain tissues. Subse-
quently, we use Fuzzy Adaptive Resonance Theory (ART),
which maintains the neighborhood regions and integrates cat-
egories according to the order of the brightness distribution.
We applied our method to clinical head MR images of 30
men and women in their 30s–70s and obtained results ac-
cording to the anatomical structural information of the brain.
From visual evaluation by a diagnostician, the segmentation
results are fitted to quantification for brain atrophy as a
diagnosis support. Moreover, we applied our method to an
MR image database comprising clinical head MR images.
Results reveal a significant correlation between aging and
expansion of CSF.

II. PROPOSEDMETHOD

The determination of tissue boundaries is a challenging
task because the brightness characteristic is not clearly ap-
parent on a brightness histogram. For this study, we hybridize
SOMs and Fuzzy ART for segmentation of brain tissue
based only on the brightness characteristics and distribution
of head MR images. We specifically examine the mapping
function while maintaining topological relations of weights
on SOMs and integrating a suitable number of categories
on Fuzzy ART. Our method, used in unsupervised learning

of SOMs and Fuzzy ART, requires no feature points that
are selected subjectively by an operator. Fig. 1 depicts the
network architecture and the entire procedure used to execute
our method. The detailed procedures are the following.

A. Extract of intracranial region

We remove the skull and dura mater regions from original
images for extracting cerebral parenchyma (GM and WM)
and CSF regions. For removing these regions, first we convert
to a binary image that consists of the background, skull,
dura mater, and intracranial regions using Otsu’s method
[8]. Subsequently, we extract the largest object in the binary
image. After filling the inside of the object, an intracra-
nial region is extracted without skull regions. Nevertheless,
dura mater sometimes remains in the intracranial regions,
depending on the target image. Dura mater is distributed
between the skull and intracranial regions. In this report, we
introduce Level Set Methods (LSMs) to extract intracranial
regions without dura mater after extracting the object using
Otsu’s method. Actually, LSMs have been attractive for use
as a topology-free deformable model that enables separation
or combination of contours. The contour frames (shrinkage,
expansion, curvature, transformation, etc.) are expressed by
Partial Differential Equation (PDE) [9]. The PDE updates
the progress of the contour. The LSMs are effective to
extract intracranial regions’ contours of different sizes and
shapes with transformation, separation, and combination of
the contours. For the initial contour of LSMs, we use the
contour around the object extracted using Otsu’s method.
The contour based on PDE depends on a brightness gradient
or the energy of an image. For that reason, we use LSMs
that can extract intracranial regions irrespective of dura mater
with low brightness.

B. Nonlinear quantization with SOMs

Fig. 2(a) depicts a brightness histogram of a head MR
image. The boundaries of brain tissues are not clear in the
histogram because of the nonlinear brightness characteristic
and wide dynamic range. Therefore, we use the self-mapping
capability of SOMs to create categories to quantize the
brightness distribution from topological relations of features
in head MR images. We can classify input features while
maintaining topological relations through learning based on
neighborhood regions. The number of created categories
depends on the number of mapping layer units. In this study,
our segmentation targets are three tissues: CSF, GM, and
WM. The segmentation results are not correspondent to these
tissues if the number of mapping layer units is less than five
units. The narrow mapping space of the insufficient number
of units cannot express the brightness distribution of images.
Therefore, we increased mapping layer units for improving
the classification performance of SOMs. Fig. 2(b) depicts a
result of nonlinear quantization of the brightness histogram
with SOMs. The brightness histogram is quantized accord-
ing to the brightness characteristics and tissue boundaries.
While spreading the mapping space, granular segmentation
is possible for the brightness distribution of a wide dynamic
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Fig. 2. Brightness histogram of a head MR image: (a) histogram of
brightness by original image, (b) histogram of segmented categories with
nonlinear quantization of SOMs, (c) histogram of integrated categories with
Fuzzy ART.

range. We evaluate the number of mapping layer units in
detail through a preliminary experiment described in the next
section.

The input features for SOMs are a brightness value of
an attention pixel and various features from a local block.
The local block is chosen from a selected pixel that is
extracted randomly from the target image. Subsequently, we
calculate features of the brightness distribution, edge, and
texture information in the local block. The input features
of SOMs are a brightness value, an average brightness
value, a difference value for the maximum brightness, and a
difference value for the minimum brightness from the local
block. When we use only brightness values, the WM regions
and GM regions are mixed. The result indicates that head
MR images appear to have similar brightness values in the
different tissues. Moreover, in this case, the segmentation

result includes many noise pixels because the input feature
is treated as independent information in each pixel and the
brain tissue continuity is not considered. Therefore, we use
the average brightness value as the feature of the continuity
of tissues and the difference values for the maximum and
minimum brightness as the boundary between tissues [10].

The SOMs are unsupervised neural networks of compet-
itive learning for self-mapping in a low dimension space
that maintain the topological relations of multidimensional
input data [11]. In fact, the SOMs save topological relations
of characteristics and have a characteristic of self-mapping
inside of the network. Therefore, similar tissues are obtain-
able using topological characteristics of SOMs. The training
algorithm of SOMs is the following.

1) Let wij(t) be the weight from the input uniti to
the Kohonen unit(n,m) at time t. The weights are
initialized with random numbers.

2) Let xi(t) be the input data to the input uniti at time
t. The Euclidean distancedj betweenxi(t) andwij(t)
is calculated as

dj =

√√√√ n∑
i=1

(xi(t)− wij(t))2. (1)

3) The win unit c for which dj becomes a minimum is
defined as

c = argmin(dj). (2)

4) Let Nc(t) be the units of the neighborhood of the unit
c. The weightwij(t) inside Nc(t) is updated using
the Kohonen training algorithm as (α(t) is training
coefficient, which decreases with time.)

wij(t+ 1) = wij + α(t)(xi(t)− wij(t)). (3)

5) Training is finished when the iterations reach the
maximum number.

In our method, the initial value ofα(t) is set as 0.5, and the
initial of Nc(t) is set as 2/3 of the number of mapping layer
units. It is designed so that both values decrease linearly with
time. The number of learning operations is set empirically
as 20,000.

C. Integrating categories with Fuzzy ART

Fuzzy ART is a theoretical model of incremental learn-
ing neural networks that enables the retention of stability
and plasticity together [12]. We use weights of SOMs for
training data of Fuzzy ART. The brightness histogram of
head MR images is quantized nonlinearly using SOMs. Fig.
2(c) depicts the integration results of categories with Fuzzy
ART. The brightness distribution that is quantized nonlinearly
by SOMs does not accommodate brain tissues, depending
on the number of mapping layer units of SOMs. Using
Fuzzy ART, classification results that correspond to brain
tissues are obtained according to the order of brightness
while maintaining a relation between categories classified by



SOMs. Irrespective of the target image, the number of target
brain tissues is fixed. Therefore, in T2-weighted images, the
order of the brightness distribution is: CSF is the highest;
GM and WM are the second and third, respectively; and the
background is the lowest. Therefore, the mapping colors are
assigned in the above order in accordance with the magnitude
of weight vectors.

Fuzzy ART makes it possible to integrate the category in
a constant scale of the vigilance parameter that controls the
classification granularity. We decide the vigilance parameter
in the preliminary experiment at the next section. The Fuzzy
ART algorithm is the following:I is an inputm-dimensional
vector. The quantities of neurons of the F1 and F2 are,
respectively,M andN . Fuzzy ART dynamics are determined
using the choice parametera(a > 0), the learning rate
parameterr(0 ≤ r ≤ 1), and the vigilance parameter
ρ(0 ≤ p ≤ 1).

1) wi are the weights between each F2 neuroni and each
corresponding F1 neuron. Allwi are initialized as one.

2) For each inputI and each neuroni, the choice function
Ti is defined as

Ti =
|I ∧ wi|
a+ |wi|

, (4)

where the fuzzy AND operator are defined as

(n ∧ v)j ≡ min(uj ∧ vj), (5)

and where the norm is defined as

|u| ≡
m∑
j=1

|uj |. (6)

3) i0, which is the maximum value ofTi, is selected for
a category as a winner. The category with the smallest
index is chosen if more thanTi is maximal. Wheni0
is selected for a category, thei0 the neuron on the F2
is set to 1 and other neurons are set to zero.

4) Resonance or resetting is judged as 5) if the selected
category at 2) and 3) matches the input dataI.

5) Resonance occurs if the match function of the chosen
category meets the vigilance criterion. The weight
vectorwi0 is updated as

wi0 = r(I ∧ wi0) + (1− r)wi0. (7)

6) If I has no resonance toi0, then i0 is reset. The
network seeks the next categoryTi to be maximal and
reselects it. The network determines resonance or it
resets. If all categories are reset, then go to 7).

7) A neuron is created on F2 and a new category is
registered. Steps 2)–7) are controlled byM andK and
are repeatedM ×K times to be presented sequentially
of I.
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Fig. 3. Segmentation results of CSF according to the number of mapping
layer units: (a)–(f) from 5 units to 17 units step by 2 units, expect of 11
units.

III. PRELIMINARY EXPERIMENT

In this section, we present an evaluation of the number of
mapping layer units of SOMs and the vigilance parameter
of Fuzzy ART. We use five samples of head MR images
for research use in each generation from 30s to 70s. The
resolution of head MR images is 512× 512 pixels. We
convert the brightness level from 16 bit to 8 bit using linear
quantization.

A. Mapping layer units (nonlinear quantization)

The structure of brain tissues differs from mapping layer
units of SOMs corresponding to the target images. Espe-
cially in T2-weighted images, the segmentation of cerebral
parenchyma to WM and GM is a challenging task because
the brightness gap separating them is slight. We set a high
granularity mapping space to segment in each target image.
We evaluate the number of mapping layer units to change
from 5 units to 17 units. For creating the same number of
units around the burst unit, we increased the total number of
unit steps by two units. Fig. 3 shows the segmentation results
of CSF regions. For five units, the CSF regions that show
high brightness are expanded to GM regions. In this case,
CSF regions and high-brightness GM regions are mapped
to one unit because the mapping space is insufficient for



segmentation. From seven units, the segmentation results
are improved according to the increment of the number of
mapping layer units. In the case of 17 units, a non-burst unit
that is assigned no pixels of head MR images is apparent. In
our method, we set the mapping layer to 15 units, which is
a sufficient mapping space, and all units are burst.

B. Vigilance parameter (integration granularity)

The Fuzzy ART responds sensitively to changed parame-
ters. The classification granularity is controlled mainly by the
vigilance parameterρ. For evaluation of this parameter, we
setρ as 0.800–0.950, with steps by 0.025. Fig. 4 shows three
samples of segmentation results (ρ=0.850, 0.875, and 0.900).
We specifically examine GM and WM regions segmentation
results because CSF regions are not changed withρ. For ρ
higher than 0.900, the GM regions are divided into several
categories with finer classification granularity. Forρ of 0.900,
GM regions are divided into two categories. The boundaries
of tissues remain as independent tissues that are not inte-
grated according to brain tissues. Forρ lower than 0.850, GM
and WM regions are segmented extensively. Forρ of 0.850,
the segmentation result GM appears as a consecutive cingular
of the region along the boundary of the CSF and the WM.
However, for some images, GM regions and WM regions
are integrated into one category. Forρ of 0.875, GM regions
appear at the cingular of the region at the boundary between
CSF and WM against any images. Based on observation by
a diagnostician, this result is matched to the anatomical brain
structures. Therefore, we set the vigilance parameter to 0.875.

IV. EVALUATION EXPERIMENT

We use clinical head MR images of 30 men and women
in their 30s–70s in this section. The head MR images were
taken at brain dock examinations. The resolution of head MR
images is 512× 512 pixels. We convert the brightness level
from 16 bit to 8 bit using linear quantization.

A. Extraction results of intracranial region

We applied LSMs to failed images obtained using Otsu’s
method in which the dura mater and the intracranial region
are in contact. Fig. 5 shows an extraction result near the
frontal lobe in intracranial regions using LSMs. The dotted
line shows the LSM contour upon which is constructed the
surface of the intracranial region. The brightness gradient of
intracranial regions is higher than that of the dura mater.
Therefore, LSMs can remove dura mater that cannot be
removed using Otsu’s method.

B. Segmentation results

Fig. 6 shows comparison results of segmentation tissues
obtained using our method and the former method [7].In
the former method, the CSF and GM regions are segmented
extensively. In the former method, the mapping layer is fixed
to five units. We consider that the number of the mapping
layer units is inadequate for mapping the brightness charac-
teristics of the head MR image. Moreover, the brightness
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Fig. 4. Segmentation results of GM and WM according to vigilance
parameters: (a)–(c) of 0.850–0.900, with steps of 0.025.
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Fig. 5. Extraction result near the frontal lobe in an intracranial region
using LSMs: (a) ground truth created by a diagnostician, (b) the dotted line
shows the contour extracted by LSMs, the arrow shows the dura mater.

characteristics corresponding to the tissues differ in each
target image.

In contrast, our method can segment the CSF regions along
with high-brightness regions, although the boundary between
CSF and GM regions show a similar contrast. The GM shows
consecutive band-shaped regions to the boundary between
CSF and WM regions. Therefore, segmentation results that
reflect the continuity and marginal information of the brain
tissues are obtained.

C. Application to clinical head MR images

Fig. 7 shows segmentation results of the CSF, to which
we devoted attention for quantification of brain atrophy. From
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Fig. 6. Comparison results of segmentation tissues: (a) our method, (b)
the former method.

the clinical head MR images, we selected four typical images
that show a distinction of the brightness distribution. The
CSF regions are segmented definitely along high-brightness
pixels and the boundaries between CSF and GM, although
these images contain individual variations of brain structure
characteristics. The high-brightness regions are segmented
with high granularity of the mapping space to be assigned 15
units of the mapping layer of SOMs. We obtained the results
reflected by the assignment of GM and WM regions of low
brightness for integration by Fuzzy ART. In the judgment
of a diagnostician, the segmentation results are evaluated as
matched to the brain structures.

According to the volume rates of respective target tissues,
we measured structural changes of the brain that occur with
aging. We applied our method to an MR image database com-
prising clinical head MR images. Our method can produce a
suitable assignment of the mapping space for a target image
with various brightness distributions. Fig. 8 depicts volume
rates of segmented tissues (CSF, GM, and WM) by age. In
the intracranial region, CSF regions are increased and GM
regions are decreased by aging. From this result, we observe
a significant correlation between aging and expansion of CSF.

V. CONCLUSION

This paper presented an unsupervised segmentation
method that hybridized SOMs and Fuzzy ART based solely
on the brightness distribution and characteristics of head

��� ���
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Fig. 7. Segmentation results of CSF for clinical head MR images taken at
brain dock examinations: (a) 60s, male; (b) 70s, male; (c) 40s, female; (d)
70s, female.
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Fig. 8. Volume rates of segmented tissues (CSF, GM, and WM) by age.

MR images. For the intracranial region extracted by LSMs,
we segmented it with high granularity using SOMs and
integration of three regions (CSF, GM, and WM) using Fuzzy
ART while maintaining relations of anatomical structures of
brain tissues and the order of brightness on T2-weighted MR
images. We obtained the following results.

• Using LSMs as a deformable model, our method can
extract intracranial regions without the dura mater that
remains when using Otsu’s method.

• With expansion of the mapping layer from 5 units to 15
units, our method can segment CSF regions along with
high-brightness regions according to brain structures.

• For application to clinical head MR images, segmenta-
tion results are matched to the anatomical brain structure
evaluated by a diagnostician.



• For application to an MR image database comprising
clinical head MR images, significant correlation be-
tween aging and expanding of CSF was found.

We produced a process that is useful to provide objective
information for use in support of brain atrophy diagnosis.
Future studies will be undertaken to optimize LSM pa-
rameters using evolutionary learning based methods, e.g.
Genetic Algorithms (GAs). Moreover, we will apply Active
Appearance Models (AAM) for extraction of sagittal sinus
regions.
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